LARS#
- class stable_ssl.optimizers.LARS(params, lr=1.0, momentum=0, eta=0.001, dampening=0, weight_decay=0, nesterov=False, epsilon=0)[source]#
Bases:
Optimizer
Implement LARS (Layer-wise Adaptive Rate Scaling) optimizer.
- Parameters:
params (iterable) – Iterable of parameters to optimize or dicts defining parameter groups.
lr (float) – Learning rate.
momentum (float, optional) – Momentum factor. Default is 0.
eta (float, optional) – LARS coefficient as used in the paper. Default is 1e-3.
weight_decay (float, optional) – Weight decay (L2 penalty). Default is 0.
dampening (float, optional) – Dampening for momentum. Default is 0.
nesterov (bool, optional) – Enables Nesterov momentum. Default is False.
epsilon (float, optional) – Epsilon to prevent division by zero. Default is 0.