Source code for stable_ssl.optimizers
"""Optimizers."""
#
# Author: Randall Balestriero <randallbalestriero@gmail.com>
# Hugues Van Assel <vanasselhugues@gmail.com>
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch.optim.optimizer import Optimizer, required
[docs]
class LARS(Optimizer):
"""Implement LARS (Layer-wise Adaptive Rate Scaling) optimizer.
Parameters
----------
params : iterable
Iterable of parameters to optimize or dicts defining parameter groups.
lr : float
Learning rate.
momentum : float, optional
Momentum factor. Default is 0.
eta : float, optional
LARS coefficient as used in the paper. Default is 1e-3.
weight_decay : float, optional
Weight decay (L2 penalty). Default is 0.
dampening : float, optional
Dampening for momentum. Default is 0.
nesterov : bool, optional
Enables Nesterov momentum. Default is False.
epsilon : float, optional
Epsilon to prevent division by zero. Default is 0.
"""
def __init__(
self,
params,
lr=1e0,
momentum=0,
eta=1e-3,
dampening=0,
weight_decay=0,
nesterov=False,
epsilon=0,
):
if lr is not required and lr < 0.0:
raise ValueError(f"Invalid learning rate: {lr}")
if momentum < 0.0:
raise ValueError(f"Invalid momentum value: {momentum}")
if weight_decay < 0.0:
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
defaults = dict(
lr=lr,
momentum=momentum,
eta=eta,
dampening=dampening,
weight_decay=weight_decay,
nesterov=nesterov,
epsilon=epsilon,
)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError(
"Nesterov momentum requires a momentum and zero dampening."
)
super().__init__(params, defaults)
def __setstate__(self, state):
"""Set the optimizer state."""
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
[docs]
def step(self, closure=None):
"""Perform a single optimization step.
Parameters
----------
closure: callable, optional
A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group["weight_decay"]
momentum = group["momentum"]
eta = group["eta"]
dampening = group["dampening"]
nesterov = group["nesterov"]
epsilon = group["epsilon"]
for p in group["params"]:
if p.grad is None:
continue
w_norm = torch.norm(p.data)
g_norm = torch.norm(p.grad.data)
if w_norm * g_norm > 0:
local_lr = eta * w_norm / (g_norm + weight_decay * w_norm + epsilon)
else:
local_lr = 1
d_p = p.grad.data
if weight_decay != 0:
d_p.add_(p.data, alpha=weight_decay)
if momentum != 0:
param_state = self.state[p]
if "momentum_buffer" not in param_state:
buf = param_state["momentum_buffer"] = torch.clone(d_p).detach()
else:
buf = param_state["momentum_buffer"]
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
p.data.add_(-local_lr * group["lr"], d_p)
return loss