Source code for stable_ssl.optimizers

"""Optimizers."""
#
# Author: Randall Balestriero <randallbalestriero@gmail.com>
#         Hugues Van Assel <vanasselhugues@gmail.com>
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
from torch.optim.optimizer import Optimizer, required


[docs] class LARS(Optimizer): """Implement LARS (Layer-wise Adaptive Rate Scaling) optimizer. Parameters ---------- params : iterable Iterable of parameters to optimize or dicts defining parameter groups. lr : float Learning rate. momentum : float, optional Momentum factor. Default is 0. eta : float, optional LARS coefficient as used in the paper. Default is 1e-3. weight_decay : float, optional Weight decay (L2 penalty). Default is 0. dampening : float, optional Dampening for momentum. Default is 0. nesterov : bool, optional Enables Nesterov momentum. Default is False. epsilon : float, optional Epsilon to prevent division by zero. Default is 0. """ def __init__( self, params, lr=1e0, momentum=0, eta=1e-3, dampening=0, weight_decay=0, nesterov=False, epsilon=0, ): if lr is not required and lr < 0.0: raise ValueError(f"Invalid learning rate: {lr}") if momentum < 0.0: raise ValueError(f"Invalid momentum value: {momentum}") if weight_decay < 0.0: raise ValueError(f"Invalid weight_decay value: {weight_decay}") defaults = dict( lr=lr, momentum=momentum, eta=eta, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, epsilon=epsilon, ) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError( "Nesterov momentum requires a momentum and zero dampening." ) super().__init__(params, defaults) def __setstate__(self, state): """Set the optimizer state.""" super().__setstate__(state) for group in self.param_groups: group.setdefault("nesterov", False)
[docs] def step(self, closure=None): """Perform a single optimization step. Parameters ---------- closure: callable, optional A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: weight_decay = group["weight_decay"] momentum = group["momentum"] eta = group["eta"] dampening = group["dampening"] nesterov = group["nesterov"] epsilon = group["epsilon"] for p in group["params"]: if p.grad is None: continue w_norm = torch.norm(p.data) g_norm = torch.norm(p.grad.data) if w_norm * g_norm > 0: local_lr = eta * w_norm / (g_norm + weight_decay * w_norm + epsilon) else: local_lr = 1 d_p = p.grad.data if weight_decay != 0: d_p.add_(p.data, alpha=weight_decay) if momentum != 0: param_state = self.state[p] if "momentum_buffer" not in param_state: buf = param_state["momentum_buffer"] = torch.clone(d_p).detach() else: buf = param_state["momentum_buffer"] buf.mul_(momentum).add_(d_p, alpha=1 - dampening) if nesterov: d_p = d_p.add(momentum, buf) else: d_p = buf p.data.add_(-local_lr * group["lr"], d_p) return loss