GDSolver
- class GDSolver(model: Costable, n_steps: int, action_noise=0.0, device='cpu')[source]
Bases:
ModuleGradient Descent Solver.
- configure(*, action_space, n_envs: int, config) None[source]
- init_action(actions=None)[source]
Initialize the action tensor for the solver.
set self.init - initial action sequences (n_envs, horizon, action_dim)
- set_seed(seed: int) None[source]
Set random seed for deterministic behavior.
- Parameters:
seed – Random seed to use for numpy and torch
- solve(info_dict, init_action=None) Tensor[source]
Solve the planning optimization problem using gradient descent.