Source code for stable_ssl.optim.lars

# Copied from Pytorch Lightning Bolts
# (https://github.com/PyTorchLightning/lightning-bolts/blob/master/pl_bolts/optimizers/lars.py)

import torch
from torch.optim.optimizer import Optimizer, required


[docs] class LARS(Optimizer): r"""Extends SGD in PyTorch with LARS scaling from the paper. Implementation based on `Large batch training of Convolutional Networks <https://arxiv.org/pdf/1708.03888.pdf>`_. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float): learning rate momentum (float, optional): momentum factor (default: 0) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) dampening (float, optional): dampening for momentum (default: 0) nesterov (bool, optional): enables Nesterov momentum (default: False) eta (float, optional): trust coefficient for computing LR (default: 0.001) eps (float, optional): eps for division denominator (default: 1e-8) Example: >>> model = torch.nn.Linear(10, 1) >>> input = torch.Tensor(10) >>> target = torch.Tensor([1.]) >>> loss_fn = lambda input, target: (input - target) ** 2 >>> # >>> optimizer = LARS(model.parameters(), lr=0.1, momentum=0.9) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() .. note:: The application of momentum in the SGD part is modified according to the PyTorch standards. LARS scaling fits into the equation in the following fashion. .. math:: \begin{aligned} g_{t+1} & = \text{lars_lr} * (\beta * p_{t} + g_{t+1}), \\ v_{t+1} & = \\mu * v_{t} + g_{t+1}, \\ p_{t+1} & = p_{t} - \text{lr} * v_{t+1}, \\end{aligned} where :math:`p`, :math:`g`, :math:`v`, :math:`\\mu` and :math:`\beta` denote the parameters, gradient, velocity, momentum, and weight decay respectively. The :math:`lars_lr` is defined by Eq. 6 in the paper. The Nesterov version is analogously modified. .. warning:: Parameters with weight decay set to 0 will automatically be excluded from layer-wise LR scaling. This is to ensure consistency with papers like SimCLR and BYOL. """ def __init__( self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, eta=1e-3, eps=1e-8, clip_lr=False, exclude_bias_n_norm=False, ): if lr is not required and lr < 0.0: raise ValueError(f"Invalid learning rate: {lr}") if momentum < 0.0: raise ValueError(f"Invalid momentum value: {momentum}") if weight_decay < 0.0: raise ValueError(f"Invalid weight_decay value: {weight_decay}") defaults = dict( lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, eta=eta, eps=eps, clip_lr=clip_lr, exclude_bias_n_norm=exclude_bias_n_norm, ) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError("Nesterov momentum requires a momentum and zero dampening") super().__init__(params, defaults) def __setstate__(self, state): super().__setstate__(state) for group in self.param_groups: group.setdefault("nesterov", False)
[docs] @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() # exclude scaling for params with 0 weight decay for group in self.param_groups: weight_decay = group["weight_decay"] momentum = group["momentum"] dampening = group["dampening"] nesterov = group["nesterov"] for p in group["params"]: if p.grad is None: continue d_p = p.grad p_norm = torch.norm(p.data) g_norm = torch.norm(p.grad.data) # lars scaling + weight decay part if p.ndim != 1 or not group["exclude_bias_n_norm"]: if p_norm != 0 and g_norm != 0: lars_lr = p_norm / ( g_norm + p_norm * weight_decay + group["eps"] ) lars_lr *= group["eta"] # clip lr if group["clip_lr"]: lars_lr = min(lars_lr / group["lr"], 1) d_p = d_p.add(p, alpha=weight_decay) d_p *= lars_lr # sgd part if momentum != 0: param_state = self.state[p] if "momentum_buffer" not in param_state: buf = param_state["momentum_buffer"] = torch.clone(d_p).detach() else: buf = param_state["momentum_buffer"] buf.mul_(momentum).add_(d_p, alpha=1 - dampening) if nesterov: d_p = d_p.add(buf, alpha=momentum) else: d_p = buf p.add_(d_p, alpha=-group["lr"]) return loss