Source code for stable_ssl.backbone.mlp

import torch


[docs] class MLP(torch.nn.Sequential): """This block implements the multi-layer perceptron (MLP) module. Args: in_channels (int): Number of channels of the input hidden_channels (List[int]): List of the hidden channel dimensions norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the linear layer. If ``None`` this layer won't be used. Default: ``None`` activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the linear layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU`` inplace (bool, optional): Parameter for the activation layer, which can optionally do the operation in-place. Default is ``None``, which uses the respective default values of the ``activation_layer`` and Dropout layer. bias (bool): Whether to use bias in the linear layer. Default ``True`` dropout (float): The probability for the dropout layer. Default: 0.0 """ def __init__( self, in_channels: int, hidden_channels: list[int], norm_layer: str = None, activation_layer=torch.nn.ReLU, inplace: bool = None, bias: bool = True, dropout: float = 0.0, ): # The addition of `norm_layer` is inspired from the implementation of TorchMultimodal: # https://github.com/facebookresearch/multimodal/blob/5dec8a/torchmultimodal/modules/layers/mlp.py params = {} if inplace is None else {"inplace": inplace} layers = [] in_dim = in_channels for hidden_dim in hidden_channels[:-1]: if in_dim is None: layers.append(torch.nn.LazyLinear(hidden_dim, bias=bias)) else: layers.append(torch.nn.Linear(in_dim, hidden_dim, bias=bias)) if norm_layer == "batch_norm": layers.append(torch.nn.BatchNorm1d(hidden_dim)) layers.append(activation_layer(**params)) layers.append(torch.nn.Dropout(dropout, **params)) in_dim = hidden_dim layers.append(torch.nn.Linear(in_dim, hidden_channels[-1], bias=bias)) layers.append(torch.nn.Dropout(dropout, **params)) super().__init__(*layers)