stable_pretraining.data.synthetic_data

stable_pretraining.data.synthetic_data#

Synthetic and simulated data generators.

This module provides various synthetic data generators including manifold datasets, noise generators, statistical models, and simulated environments for testing and experimentation purposes.

Functions

generate_perlin_noise_2d(shape, res[, ...])

Generate 2D Perlin noise.

perlin_noise_3d(x, y, z)

Generate 3D Perlin noise at given coordinates.

swiss_roll(N[, margin, sampler_time, ...])

Generate Swiss Roll dataset points.

Classes

Categorical(values, probabilities)

Categorical distribution for sampling discrete values with given probabilities.

ExponentialMixtureNoiseModel(rates, prior[, ...])

Exponential mixture noise model for data augmentation or sampling.

ExponentialNormalNoiseModel(rate, mean, std, ...)

Exponential-normal noise model combining exponential and normal distributions.

GMM([num_components, num_samples, dim])

Gaussian Mixture Model dataset for synthetic data generation.

MinariEpisodeDataset(dataset)

Dataset for Minari reinforcement learning data with episode-based access.

MinariStepsDataset(dataset[, num_steps, ...])

Dataset for Minari reinforcement learning data with step-based access.